Escherichia coli replication termination protein impedes the action of helicases.
نویسندگان
چکیده
Identification of the consensus sequence for termination of replication (ter) in Escherichia coli and the isolation of the ter-binding protein (TBP) allowed us to test their effects on replication forks initiated at the unique origin of the E. coli chromosome (oriC) in a purified enzyme system. Replication was severely impeded by ter in a unique orientation when purified TBP was supplied to bind it. The target for blockage within the replication complex can now be ascribed to the inability of dnaB helicase to separate the duplex strands when it encounters ter bound by TBP. Other helicases, such as rep and uvrD proteins, that translocate on DNA and displace strands in the direction opposite to that of dnaB protein are also blocked, but only when the TBP-bound ter is oriented in the other direction. From these results, we infer that the orientation of ter confers a particular polarity on the TBP seated on it, such that a helicase is blocked when it confronts TBP from one side, but can act, presumably by displacing TBP, when facing its other side. Thus, the intrinsic nature of the oriented TBP-ter complex is responsible for impeding the helicases, rather than any protein-protein interactions.
منابع مشابه
Termination complex in Escherichia coli inhibits SV40 DNA replication in vitro by impeding the action of T antigen helicase.
DNA replication terminus (ter)-binding protein (TBP) in Escherichia coli binds specifically to the terminus (ter) site, and the resulting complex severely blocks DNA replication in an unique orientation by inhibiting the action of helicases. To generalize the intrinsic nature of the orientated ter-TBP complex against various helicases, we tested the potential of the complex to inhibit the actio...
متن کاملMechanism of termination of DNA replication of Escherichia coli involves helicase-contrahelicase interaction.
Using yeast forward and reverse two-hybrid analyses, we have discovered that the replication terminator protein Tus of Escherichia coli physically interacts with DnaB helicase in vivo. We have confirmed this protein-protein interaction in vitro. We show further that replication termination involves protein-protein interaction between Tus and DnaB at a critical region of Tus protein, called the ...
متن کاملHelicases that underpin replication of protein-bound DNA in Escherichia coli.
A pre-requisite for successful cell division in any organism is synthesis of an accurate copy of the genetic information needed for survival. This copying process is a mammoth task, given the amount of DNA that must be duplicated, but potential blocks to replication fork movement also pose a challenge for genome duplication. Damage to the template inhibits the replication machinery but proteins...
متن کاملA physical model for the translocation and helicase activities of Escherichia coli transcription termination protein Rho.
Transcription termination protein Rho of Escherichia coli interacts with newly synthesized RNA chains and brings about their release from elongation complexes paused at specific Rho-dependent termination sites. Rho is thought to accomplish this by binding to a specific Rho "loading site" on the nascent RNA and then translocating preferentially along the transcript in a 5'-->3' direction. On rea...
متن کاملA broad host range replicon with different requirements for replication initiation in three bacterial species.
Plasmid RK2 is unusual in its ability to replicate stably in a wide range of Gram-negative bacteria. The replication origin (oriV) and a plasmid-encoded initiation protein (TrfA; expressed as 33 and 44 kDa forms) are essential for RK2 replication. To examine initiation events in bacteria unrelated to Escherichia coli, the genes encoding the replicative helicase, DnaB, of Pseudomonas putida and ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 86 23 شماره
صفحات -
تاریخ انتشار 1989